Vanity thought #1795. VC – Putting Vedas back into Cosmology again

Link: “Mystic Universe: An Introduction to Vedic Cosmology”.

We are near the end of the section on problems with modern science. I think most of them have been presented already, leaving only a discussion on dark energy and dark matter which be the subject of the next couple of chapters. So far we’ve covered things like speed of light, Doppler effects, parallax, luminosity, thermodynamics, general relativity and some aspects of quantum theory. I might be missing something but it’s a long list as it is. In every case the book highlights problems with each discipline and explains them through semantic theory where these problems do not arise. Semantic theory, in turn, needs an induction of several principles so far completely absent from modern science and in today’s chapter there’s an attempt to describe these principle in Vedic terms, then somehow the discussion shifts to dark matter and conversion flows gently into the next chapter where some outrageous things are stated, but all in good time.

Should dark matter and energy have gotten their own chapter instead of stealing the show in the middle of the Vedic explanation of things? Probably, but the reason they are brought here is that there’s a nice semantic explanation of what “dark” means which ties it up back Sāṅkhya. Should I follow chapter’s narrative or should I re-organize the ideas in some other way? Probably, but I’m not sure my alternative would be better. Reorganizing ideas is a good exercise which leads to deeper understanding so I’ll try for a change. There are two hooks into Sāṅkhya in this chapter and we can start with semantics first and then describe these hooks later.

First of all, in Sāṅkhya the universe is a space-time tree and objects in this tree represent not only mass, which is the view of general relativity and gravitational theory, but any kind of semantic information. Various forms of semantic information are related to each other as abstracts and contingents. The most contingent forms are sense objects and that’s all we can perceive directly. Sense objects are produced from sensations which, in turn, are produced from senses.

We all have senses, there should be no argument about that, so we can perceive colors and sounds, but the author makes an interesting twist here – can we see color itself? We can see red and we can see blue but those are properties of color, as in “red color” or “blue color”. We see red and blue but not “color”. Similarly, we can hear musical notes but can’t hear the tone itself. To make tone perceptible it must have added details to produce a contingent object, like C#. In the same vein we have vision but can’t see vision itself not can we hear hearing. Concepts such as color and tone are abstract and by adding details to them we can produces perceptible contingents, such as sense objects, and it works in the down-up direction as well.

In this way the universal tree can be traversed up to the root. From sense objects to sensations, from sensations to senses, from senses to mind, from mind to intelligence, and from intelligence to ego. Each step is more abstract than the next. When we go from the top down we get progressively contingent objects with more details added to previous abstracts.

In our everyday life we all have language terms to discuss those abstracts and our common sense understanding of reality is not that different from Sānkhya. Consider intentions, for example. We all have them but we can’t see them directly. To demonstrate one’s intention it has to be converted into perceptible actions with perceptible sense objects. That way intentions can be “proven”. Intentions are causes of our actions but they are not seen, only their effects are visible.

Problem for science here is that intentions are excluded and ignored, except for humanities maybe. In hard science causes are attributed to visible objects and their properties, e.g. mass causes gravitational pull. All other things like intentions, guṇa, karma, mind, intelligence etc are physically imperceptible and therefore, from science point of view, are “dark”.

That’s where there’s a hook between Sāṅkhya and science in this chapter – empirical observations of movements of stars and galaxies do not conform with predictions of gravitational theory and their causes are attributed to “dark matter” and “dark energy”. Dark matter pulls stars together and is responsible for celestial objects rotating slower than they should, as if planetary systems or galaxies had a large core of invisible mass. Dark energy works in the opposite direction and forces galaxies to speed away. We can see that, no one is denying it, but the causes of these effects remain hidden and called “dark”. It’s worth repeating that together this dark mass and dark energy account for 95% of the total matter in the universe.

If only they could accept existence of abstract objects instead of only physically perceptible ones everything would become so much easier.

The second hook into Sāṅkhya, actually the first in the chapter, is that all interactions in Vedic universe are governed by guṇa and karma. These two have no equivalents in modern science and they are also dark and imperceptible but in this chapter they are linked to quantum theory. Remember that chapter on slit experiment a while back? The conclusion there was that the number of slits affects the outcome and this is what guṇa is compared to here.

Guṇa is part of our existence which modifies incoming information and which determines how it is perceived. In my mind I keep comparing guṇa to goggle with which we filter our existence. In slit chapter it was compared to base counting system – decimal, binary etc, but this kind of notation doesn’t change transmitted number itself the way pink glasses affect our vision.

Karma is channels established in the transmission of light, or any kind of information. These channels were discussed when we talked about light not going in all directions but being transmitted straight to the destination. There was source S, destination D, and cause C. Karma is this cause which connects S and D and enables information transfer. Guṇa, for some reason is compared here to D, or the part of our body which receives the light. It could be a leg or mind or eyes, I figure, but it’s an unusual way to talk about guṇa that’s for sure. It will make sense in the section on astrology, I guess, where guṇa and karma are described as two distinct celestial systems. This will come up in the next chapter as well but only briefly.

That’s it, a rather long chapter is done in one post. I might have missed a couple of paragraphs but nothing important. next chapter is very short and there’s a chance of finishing the entire section this week.

Vanity thought #1792. VC – from thermos to quantos

Link: “Mystic Universe: An Introduction to Vedic Cosmology”.

Continuing where I left off. The chapter is about unifying theories of nature but so far it’s been mostly about thermodynamics. Yesterday I said that the author has a clear preference of quantum theory and this seems to be the way science goes, too, but today the flow is reverse – the book inducts insights from thermodynamics into quantum mechanics and does it via “semantic theory of information” – my words, google returns not quite what I have in mind. It would be nice if the book had a catchy name for this theory that solves everything but it isn’t there. Or rather it’s just another presentation of Sāṅkhya done in a contemporary language, which is a good thing because Sāṅkhya is authoritative.

Last time we left on brief description of weirdness of thermodynamic exchanges. They are not weird to us as observers and users of thermodynamics for our entire lives but they are weird for science because energy transfer goes only one way – from hot to cold – and never the other, and because energy can never be transferred in full. Incidentally, there’s a homeless woman whose baby froze to death as she was holding it in Portland a few days ago. The meme created out of this story uses a photo of a homeless man from a couple of years ago so it’s a fake. The point was that we deal with transferring heat all the time, just don’t think about it much.

Now I can’t use the word “body” when talking about thermodynamics but I don’t see any other choice. So, particles comprising a body might look alike from a science point of view but they might also carry different levels of information. These levels build up as they go from abstract to contingent and so if contingent information is present then it must include its abstract, and if we remove the abstract then the contingent layer would collapse, too.

Comparatively speaking, the hot body has both abstract and contingent levels of detail but a cold body has only abstract. When they come in contact only the contingent information is transferred from the hot body to the cold until both come to the same level of abstraction. At these point both objects have the same information and no further exchanges are possible or even necessary.

In classical physics information can be sent out regardless of whether it’s needed or not – like a light bulb which shines in all directions even when you leave the room. In semantic theory this is not possible and information transfer happens only when some of it is missing AND required. We require only stuff that we don’t have – we can’t require something we already possess, but we don’t require all of what is missing. So information must be missing first and then required as the next logical step. Then information transfer could occur. In case of two bodies in thermodynamics when they reach the same temperature there’s no missing information in either of the systems so transfer stops because of the first rule – information mush be missing.

This is where the books shifts to quantum theory and plugs it with what is missing there. Two quantum systems must be connected, or entangled in QT speak, one of them must have more information than the other, and the other must need that information so that it becomes missing and required. Only when these conditions are satisfied energy/information transfer will take place.

Current quantum theory doesn’t get that. It can’t predict neither when the particles will be emitted nor where exactly they would go. The question of where does not really arise because QT assumes that a particle/wave would fly out and will be absorbed by whatever happens to be in its path. Thermodynamics tells us that it’s all wrong – first two systems must come in contact and once that happens the when, where, and what will be exchanged will become fixed as well and we’ll know everything.

Apparent randomness and unpredictability of quantum behavior is, therefore, caused by us not knowing how two systems become entangled. I don’t think this is accepted as an obvious reason in current quantum theory but the author’s long term goal here is to propose a solution to this problem of random entanglement, which lies in semantic interpretation of karma.

Abbreviating all this we get source S, destination D, and cause C. Unless C brings S and D together they have potential for exchange but it doesn’t happen – probably because without C they are not designated as actual S and D yet, they are just “things”. In thermodynamics C is a choice to put hot and cold bodies together. In quantum theory objects don’t have to be physically close and C has to create a channel between S and D through which information can transfer. Once the channel is established information is transferred immediately. The role of causality in nature, therefore, is establishing and breaking up these channels. The author says that these channels are like roads on which information travels and that they might exist without being attached to any particular pair of source and destination. This last part is a bit unclear but okay, no biggie.

Bringing relativity into a fold, as the chapter intended, the implications of this model for cosmology are huge – light from the stars doesn’t shine in all directions equally and it hasn’t been travelling to us for billions of years. Rather it’s transmitted instantaneously as soon as a channel between the star (S) and us (D) is established. Stars don’t spam the universe with their light but rather send it to those for whom it was intended and assigned by the cause C.

Time involved in this process is spend on absorbing the light, not on its travel. It takes time for us to process the received information and come to a state when it becomes part of our system, but it’s not longer than our lifetime. To us this absorbed information manifests as life experiences. When we finally “see” the light we think it happened just now but, in fact, light has been received earlier and we were just processing it. It’s like the “aha” moment when reading a book – it takes time to process the words and realize it’s important.

The last paragraph sums it all up. As promised, there’s a unification of three fundamental theories of nature but no one theory gets to be a winner. Information transfer must happen when there’s a channel between the source and the destination. and it’s established by a third party and it’s this third agency that is missing from all branches of modern science. There’s also an interesting addition that it’s not our entire body that must receive the information but only the part which is connected to a channel. The same information, therefore, can create different experiences in us depending on how exactly the channels are created what they are connected to. To figure it all out science needs a theory of channel establishment. We have one in Sāṅkhya but it’s not the time to bring it up yet.

Vanity thought #1791. VC – No Unity In Diversity

Link: “Mystic Universe: An Introduction to Vedic Cosmology”.

Before moving on to the next chapter I want to say a few words about this book and potential “problems” with it. As a rule, it has no supporting quotes for its assertions about Sāṅkhya or Śrīmad Bhāgavatam whatsoever. How can we be sure that this is really what Sāṅkhya says? If we check the content of Śāṅkhya related chapters in the Third Canto we might not even recognize what is presented here. The answer is that it’s not so much the quotes that we need but thorough understanding of principles – principles on which we can already easily agree.

We all know that we change bodies, for example, but how many of us pursue this principle logically to realize that our bodies do not move through space from one end of the room to another, that this motion is only an illusion, and so our models of space which are built on it are an illusion, and that out entire grade school curriculum on geometry or physics is just one big lie. That’s why Śrīla Prabhupāda dismissed Moon travel a full decade before it happened, before coming to America. In Vedic science travel means changing of bodies, you change into a moon body and you are on the Moon. You don’t change into a moon body and you aren’t. Very simple.

How many quotes do we need to realize that? None, we already know everything we need to know, we just don’t think deep enough about it.

Another example – all empirically perceptive sense objects are created to match living beings desires for sensations – they do not exist independently or objectively. None of them. One might object that he remembers nothing like that from chapters on Sāṅkhya but one need not to search that far – Prabhupāda’s Introduction to Bhagavad Gītā is enough:

    When we see wonderful things happening in the cosmic nature, we should know that behind this cosmic manifestation there is a controller. Nothing could be manifested without being controlled. It is childish not to consider the controller. For instance, a child may think that an automobile is quite wonderful to be able to run without a horse or other animal pulling it, but a sane man knows the nature of the automobile’s engineering arrangement.

It’s a simple principle that underwrites the entire creation. Nothing could be manifested without being controlled. Nothing appears on its own. So what if Prabhupāda only mentions Kṛṣṇa as the ultimate controller without describing controllers in between, like Lord Brahmā? This is a simple principle that we all sort of know but don’t really understand so we think that planets, stars, rocks, minerals, oceans etc are “dead” matter and we accept scientific explanations for them that don’t require neither God nor any kind of consciousness to produce. Maybe in their bubble they don’t but all it means is that they don’t know the whole truth about this process, which means they are in illusion and have only slight connection to reality. So are we, but at least we have proper sources of knowledge which we can utilize if we want to understand true nature of things or at least understand how and where science goes off track.

Back to the book. There are three major theories in science – quantum theory for small stuff, thermodynamics for our size stuff, and relativity for universe size stuff. Each of them emerged from classical physics which were linear and deterministic. Quantum mechanics is still linear but non-deterministic, relativity is deterministic but non-linear, and thermodynamics has become neither linear nor deterministic. Interesting classification but if you don’t immediately recall what the difference between linear and non-linear is it kind of loses its effect. I’d volunteer to say that in linear systems output is directly proportional to input but if you want to figure out if that is a sufficient definition and all the implications of major theories branching out this particular way you are on your own.

The point is that there’s no one theory that could describe all phenomena. The author here demonstrates a slant towards quantum theory to be the one science that rules them all. In the previous chapters we’ve seen how interpreting light from stars in the quantum way leads to discarding corner stones of relativity such as constant speed of light and judging distances to the stars by their luminosity. Today it’s thermodynamics way to be defeated by the mighty quanta.

As far as I know, this has already been done and there’s a tentative way to express thermodynamics through the theory of quantum fields but this should be interesting anyway.

First there’s a description of principal differences between classical physics and thermodynamics. In classical physics when two objects collide it’s possible that one of them transfers all its energy to the other, like one billiard ball could hit another and stop itself. This never happens in thermodynamics. If you bring two bodies together, one hot one cold, the hot one will never ever transfer all of its energy to the cold one. They’d rather reach the state of equilibrium where they both become warm. In classical physics two object hit each other with an equal force. The smaller one feels a greater effect than the big one but there’s an effect on both. In thermodynamics cold body doesn’t transfer any energy to the hotter one, it all goes one way – from hot to cold.

The book explains this one sided and never complete energy transfer in the language of Sāṅkhya as it has been formulated in the earlier section of the book – there are abstract objects and adding information to them creates contingent objects with greater level of detail. Are there any quotes for that? Not that I know of but it’s restating familiar Sāṅkhya’s processes about three guṇas producing one element out of the other in a different language, that’s all.

Matter is thus constructed from layers of information. There are layers of abstract information to which details are added to create the next layer. Some particles, which we think bodies are made of, might look the same but if they carry different levels of information they belong to different layers – some to abstract and some to contingent. Since contingent information is produced from abstract then existence of a contingent symbol means there should exist an abstract symbol already. And if you remove the abstract then contingent will collapse, too.

Next comes the actual explanation of heat transfer but I’m afraid it’s too long to start it now. Another day.